Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 14(2)2022 02 06.
Article in English | MEDLINE | ID: covidwho-1674825

ABSTRACT

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Extracellular Vesicles/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , COVID-19/immunology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Humans , Lung/immunology , Lung/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vaccination
2.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565522

ABSTRACT

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Subject(s)
COVID-19/prevention & control , Chronic Disease/prevention & control , Chronic Disease/therapy , Genetic Therapy/methods , Immunotherapy/methods , Pandemics/prevention & control , RNA, Messenger/chemistry , SARS-CoV-2/immunology , Vaccines, Synthetic , mRNA Vaccines , Biological Availability , Drug Carriers , Forecasting , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunotherapy, Active , Nanoparticle Drug Delivery System , RNA Stability , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , SARS-CoV-2/genetics , Vaccine Development , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
3.
Biomed Pharmacother ; 146: 112527, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1559074

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a devastating impact on global populations triggered by a highly infectious viral sickness, produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The third major cause of mortality in the United States, following heart disease and cancer in 2020, was undoubtedly COVID-19. The centers for disease control and prevention (CDC) and the world health organization (WHO) separately developed a categorization system for differentiating new strains of SARS-CoV-2 into variants of concern (VoCs) and variants of interest (VoIs) with the continuing development of various strains SARS-CoV-2. By December 2021, five of the SARS-CoV-2 VoCs were discovered from the onset of the pandemic depending on the latest epidemiologic report by the WHO: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529). Mutations in the receptor-binding domain (RBD) and n-terminal domain (NTD) have been found throughout all five identified VoCs. All strains other than the delta mutant are often found with the N501Y mutation situated on the RBD, resulting in higher binding between the spike protein and angiotensin-converting enzyme 2 (ACE2) receptors, enhanced viral adhesion, and following the entrance to host cells. The introduction of these new strains of SRAS-CoV-2 is likely to overcome the remarkable achievements gained in restricting this viral disease to the point where it is presented with remarkable vaccine developments against COVID-19 and strong worldwide mass immunization initiatives. Throughout this literature review, the effectiveness of current COVID-19 vaccines for managing and prohibiting SARS-CoV-2 strains is thoroughly described.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Genetic Vectors/administration & dosage , SARS-CoV-2/drug effects , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19 Vaccines/genetics , COVID-19 Vaccines/metabolism , Genetic Variation/genetics , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Treatment Outcome , Vaccines, Synthetic/genetics , Vaccines, Synthetic/metabolism , mRNA Vaccines/genetics , mRNA Vaccines/metabolism
4.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323263

ABSTRACT

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


Subject(s)
Gene Transfer Techniques , Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Nanoparticles/administration & dosage , Animals , Genetic Diseases, Inborn/genetics , Genetic Vectors/genetics , Humans
6.
Lancet ; 396(10249): 467-478, 2020 08 15.
Article in English | MEDLINE | ID: covidwho-981752

ABSTRACT

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Acetaminophen/therapeutic use , Adenoviruses, Simian/genetics , Adult , Analgesics, Non-Narcotic/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Female , Genetic Vectors/administration & dosage , Humans , Immunization, Secondary , Immunoglobulin G/blood , Male , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Single-Blind Method , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , United Kingdom , Viral Vaccines/administration & dosage
7.
Theranostics ; 11(2): 649-664, 2021.
Article in English | MEDLINE | ID: covidwho-940325

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide epidemic of the lethal respiratory coronavirus disease (COVID-19), necessitating urgent development of specific and effective therapeutic tools. Among several therapeutic targets of coronaviruses, the spike protein is of great significance due to its key role in host invasion. Here, we report a potential anti-SARS-CoV-2 strategy based on the CRISPR-Cas13a system. Methods: A comprehensive set of bioinformatics methods, including sequence alignment, structural comparison, and molecular docking, was utilized to identify a SARS-CoV-2-spike(S)-specific segment. A tiling crRNA library targeting this specific RNA segment was designed, and optimal crRNA candidates were selected using in-silico methods. The efficiencies of the crRNA candidates were tested in human HepG2 and AT2 cells. Results: The most effective crRNA sequence inducing a robust cleavage effect on S and a potent collateral cleavage effect were identified. Conclusions: This study provides a rapid design pipeline for a CRISPR-Cas13a-based antiviral tool against SARS-CoV-2. Moreover, it offers a novel approach for anti-virus study even if the precise structures of viral proteins are indeterminate.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , RNA, Guide, Kinetoplastida/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , CRISPR-Cas Systems/genetics , Computational Biology , Drug Evaluation, Preclinical , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Hep G2 Cells , Humans , Molecular Docking Simulation , SARS-CoV-2/genetics , Sequence Homology, Amino Acid
8.
Viruses ; 12(3)2020 02 28.
Article in English | MEDLINE | ID: covidwho-822450

ABSTRACT

Vaccination is one of the most effective public health interventions of the 20th century. All vaccines can be classified into different types, such as vaccines against infectious diseases, anticancer vaccines and vaccines against autoimmune diseases. In recent decades, recombinant technologies have enabled the design of experimental vaccines against a wide range of diseases using plant viruses and virus-like particles as central elements to stimulate protective and long-lasting immune responses. The analysis of recent publications shows that at least 97 experimental vaccines have been constructed based on plant viruses, including 71 vaccines against infectious agents, 16 anticancer vaccines and 10 therapeutic vaccines against autoimmune disorders. Several plant viruses have already been used for the development of vaccine platforms and have been tested in human and veterinary studies, suggesting that plant virus-based vaccines will be introduced into clinical and veterinary practice in the near future.


Subject(s)
Plant Viruses/genetics , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Communicable Disease Control , Communicable Diseases/etiology , Communicable Diseases/immunology , Genetic Engineering , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Hypersensitivity/immunology , Hypersensitivity/therapy , Neoplasms/immunology , Neoplasms/therapy , Plant Viruses/ultrastructure , Vaccines, Virus-Like Particle/therapeutic use , Vaccines, Virus-Like Particle/ultrastructure , Vaccinology/methods , Vaccinology/trends , Virion
9.
Protein Cell ; 11(10): 707-722, 2020 10.
Article in English | MEDLINE | ID: covidwho-626150

ABSTRACT

The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Mesenchymal Stem Cell Transplantation , Pandemics , Pneumonia, Viral/complications , Respiratory Distress Syndrome/therapy , Adoptive Transfer , Alveolar Epithelial Cells/pathology , Animals , Apoptosis , Body Fluids/metabolism , CD4-Positive T-Lymphocytes/immunology , COVID-19 , Clinical Trials as Topic , Coinfection/prevention & control , Coinfection/therapy , Coronavirus Infections/immunology , Disease Models, Animal , Endothelial Cells/pathology , Extracorporeal Membrane Oxygenation , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Lung/pathology , Lung/physiopathology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL